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Conventional suspension systems exhibit performance limitations when
encountering road irregularities and specific surface profiles, often failing
to attenuate road-induced disturbances effectively. This functional
deficiency reduces ride comfort and compromises vehicle dynamic
stability under various driving conditions. In contrast, active suspension
systems, utilizing hydraulic or pneumatic actuators in combination with
feedback control strategies, have demonstrated a significant potential for
disturbance suppression and considerable improvement in ride comfort
and vehicle stability. Previous studies have identified that vertical
(bounce) and rotational (roll) motions are among the primary factors
influencing passenger comfort and vehicle stability in dynamic scenarios.
Therefore, controlling these motions is essential to enhance ride quality
and handling performance. In this study, a half-car dynamic model
equipped with an active suspension system is developed, focusing on
controlling bounce and roll motions. All modeling and simulation tasks
are conducted within the MATLAB environment, where two control
strategies fuzzy control and optimal control are designed and implemented
for the active suspension system. Finally, the dynamic performance of
these two approaches is compared and analyzed. The simulation results
indicate that the optimal control strategy outperforms the fuzzy control
method regarding disturbance rejection and overall ride comfort and
vehicle stability improvement.

1. Introduction

The wvehicle suspension system combines
springs, dampers, and linkages that connect the
chassis to its wheels [1]. In general, suspension
systems have traditionally employed the concepts
of energy storage and dissipation through springs
and dampers [2]. The primary objective of a
suspension system is to maximize the frictional
contact between the vehicle's tires and the road
surface to ensure a safe and comfortable driving
experience [3]. Additionally, it guarantees
improved ride comfort for passengers.
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Active suspension systems employ various
strategies by injecting or dissipating energy into or
from the system as required. An active suspension
system uses a power source to modify the output
force in real time continuously. In such systems,
controlled forces are applied to the suspension and
wheel assembly via hydraulic or electric actuators.
An active suspension receives input from road
profile information and generates reactive troops in
response. The active suspension applies Variable
forces at each wheel to continuously adjust the ride
and handling characteristics. The key difference
between semi-active and fully active suspension
systems lies in the presence of an external energy
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source capable of actively influencing suspension
forces[4].

A complete vehicle dynamic model typically
consists of seven degrees of freedom: three
associated with the vehicle body namely bounce,
pitch, and roll and four associated with the vertical
displacement of each wheel. Bounce motion is
generally defined as the vertical movement of the
vehicle's body at its center of gravity. Pitch motion
refers to the rotation of the vehicle body about its
lateral (y) axis. In contrast, roll motion is defined
as the vehicle's rotation about its longitudinal (x)
axis. According to research findings, bounce and
pitch motions have a more significant effect on ride
comfort than roll motion. Moreover, it has been
shown that pitch motion is more perceptible to the
human body and, therefore, causes greater
discomfort for passengers [4]. As a result,
controlling these motions is critically essential for
improving ride quality. A half-car model is
commonly employed to effectively analyze these
dynamics  without introducing  excessive
complexity into the equations of motion, as it
sufficiently captures the essential degrees of
freedom for bounce and pitch control while
simplifying the overall system representation.

A reliable and accurate dynamic model is the
foundation for any scientific investigation in this
field. Consequently, reviewing the background and
progress of suspension system modeling is
essential. Lutz et al. [5] recently expanded dynamic
modeling approaches in vehicle suspension
systems, emphasizing pneumatic tire modeling and
proposing a novel model structure. Kayo et al. [6]
discussed the dynamics of heavy vehicles from a
ride performance design perspective, addressing
various aspects of suspension performance. Griffin
[7] investigated human perception of vehicle-
induced vibration, focusing on measurement and
evaluation techniques. Cole David [8] provided a
comprehensive review of the impact of heavy
commercial vehicles on pavement loading,
achieving this through dynamic suspension system
modeling. Else et al. [9] highlighted the practical
advantages of suspension design through case
studies and real-world suspension development
examples.

The existing body of research indicates
significant efforts in various aspects of
conventional vehicle dynamics and suspension
system development for passenger cars and
commercial vehicles. While extensive studies have
been conducted on vehicle roll dynamics,
considerably fewer investigations have focused on
pitch dynamics. A recent study [10] examined
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pitch motion dynamics and the effect of front and
rear suspension stiffness configurations in dual-
axle heavy vehicles with unlinked suspension
systems under a wide range of random road
excitations, driving speeds, and braking
maneuvers. In that work, well-established vehicle
models [11] for dual-axle heavy vehicles with
independent and interconnected suspension
systems were employed to assess suspension
characteristics and performance.

Recent studies on active suspension system
control are summarized: Ren and Wu [12]
employed PID and neural network control
methods. Allen and Liu [13] utilized a variable
structure control approach with parameter tuning
based on Lyapunov's method. Du and Zhang[14]
and Lin and Lian [15] applied fuzzy control
strategies.

Both theoretical and experimental results
indicate that fuzzy controllers can be powerful
tools for controlling systems exhibiting complex or
nonlinear motion dynamics [16]. Moreover, using
such controllers enhances system robustness
against variations in environmental conditions
[17]. The proposed fuzzy controller stabilizes the
suspension system by effectively rejecting
disturbances. In this context, fuzzy control was
implemented for a robotic system [18], where the
results demonstrated excellent robot motion
control and acceptable speed performance.
Reference [19] reported implementing a hybrid
fuzzy-neural approach to control the motion of a
small helicopter, confirming its effectiveness.
Subsequently, a similar approach was applied to
control the speed of a turbofan engine with
unmodeled uncertainties in its dynamic equations
[20], which also proved effective.

amshidfar et al. [21] designed an optimal control
strategy based on the LQR method to reduce
unwanted vibrations in a robotic system. The same
approach was applied to a cable-driven robot in
[22]. Habibnejad et al. [23] optimized a cable-
driven robot using LQR and derived its optimal
trajectory in the presence of obstacles and moving
boundaries. This optimal control method was then
extended to parallel manipulators with flexible
joints [24]. Finally, optimal control was employed
in [25] for suspended cable robots operating under
moving obstacles and parametric uncertainties.

In the present study, an active vehicle suspension
system is modeled and simulated based on a half-
car dynamic model, focusing on controlling bounce
and pitch motions. Using the LQR method, control
forces are derived with optimal values to minimize
energy consumption. This approach effectively
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damps vibrations induced by road excitations by
minimizing a defined cost function. All modeling
and simulations were performed in the MATLAB
environment. Two control strategies fuzzy control
and LQR were implemented for the active
suspension system, and their performances were
compared. The results demonstrate the superior
effectiveness of the optimal LQR control method.

2. Modeling

To control the pitch and bounce motions of the
vehicle, the suspension system is modeled using a
half-car dynamic model. In this configuration, the
differential motion in the springs and dampers
connected to the front and rear wheels generates a
rotational motion of the vehicle body known as
pitch. As illustrated in Figure 1, the subscript r
denotes the rear axle, while f represents the front
axle. The input forces are denoted by u, spring
stiffness by kg, equivalent tire stiffness by k;, and
damper damping coefficient by C,. The variables
Z., Zs, Z,,, and Z, represent the vertical distances
from the smooth road surface, the center of the
wheel, the suspension system endpoint, and the
vertical displacement of the vehicle's center of
gravity.

Like the quarter-car model, this half-car model
considers the masses of the suspension components
and the vehicle body. Additionally, the vehicle's
rotational inertia is included to capture pitch
dynamics accurately.
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Figure 1 : Schematic of the Half-Car Suspension

Assuming that the vehicle's roll angle ¢ is small,
it can be written as:
{Zsf(t) =Z:(t) — Lo(t) (D
Zg (1) = Z(8) + Lo(t)

where [; and [, represent the distances from the
rear and front axles to the vehicle's center of
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gravity, respectively. Using Newton's second law
and considering the static equilibrium point as the
reference point for both rotational and linear
motion, we proceed to model the motion of this
system:

I(p‘b - llksf(zsf - Zuf) - llcsf(zsf
- Zuf) + lzksr(zsr
- Zur) + lz Csr (Zsr (2)
— Zyr) = —liug + Lu,
mszc + ksf(zsf - Zuf) + Csf(zsf
- Zuf) + ksr(Zsr
- Zur) + Cor (Zsr
— Zyr) = Us + Uy
mufzuf - ksf(zsf - Zuf) - Csf(zsf
— Zyf) + kif(Zuy

— Zyp) = —Uf
murz.ur - ksr(zsr - Zur) - Csr(zsr -
Zyr) + kir (Zyr — Zpr) = —Uy

To find the vertical acceleration of the vehicle at
the front and rear axle connection points, by
combining equations (1) and (2), we can write:

Zsf = Zc —L¢
Zsr = Zc +15L¢
., 1
Zo=— (uf tu, — ksf(Zsf - Zuf) (3)
msg

- Csf(Zsf - 2uf)

- ksr(zsr - Zur)

— Csr (Zsr - Zur))
. 1 .
¢ = a (llksf(zsf - Zuf) + llcsf(zsf -
Zuf) - lzksr(zsr - Zur) - lzcsr(zsr -

Zur) - lluf + lzur)

Table 1: State-Space Variables

Expression State Variable Definition

Zsf = Zys b Front suspension displacement
Zsy — Zyr X, Rear suspension displacement
Zyf = Zrg X3 Front tire displacement
Zyr = Zpr X4 Rear tire displacement
Zgs Xs Front suspension vertical speed
Zgyp Xe Rear suspension vertical speed
Zyf Xy Front tire vertical speed
Zur Xg Rear tire vertical speed

Automotive Science and Engineering (ASE) 4857
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To obtain the state-space form of the dynamic
equations, the variables listed in Table 1 are used:

This system has two sets of inputs: 1- the control
input u, which is used to maintain system balance,
and 2- the disturbance input w, which represents
road irregularities. The input vector and state
variables are as follows:

X

=[x1 X2 X3 X4 X5 X¢ X7 Xxg]T
_ W = _ [%rr
B [ur] P W= [ ]

Z rr

“4)

&l

Then, the state-space form of the dynamic
equations will be:

\ = AX + Bii + By w

0000 a a3 0 -
- IHLH_
r
00 -1 00000
B =
00 0 -1 0000

Now, using the above model, we can proceed
with the vehicle control.

3.1. Fuzzy Controller

Fuzzy controllers demonstrate acceptable
efficiency and performance in controlling the
motion of complex systems and executing specific
maneuvers. One common design approach for
fuzzy controllers involves decomposing the
system's complex behaviors into several motions
within its operational range. After designing
appropriate control algorithms for each segment,
their corresponding actions can be combined.

This study uses a fuzzy controller to determine
suitable control forces to achieve the desired
control objectives while maintaining good
robustness against external disturbances. This
controller is formulated based on a set of if-then
rules in the following form:
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If l;isAand I; is B, (13)
then u;is C

In the continuation, the AND and OR operators
are defined as follows:

tavs = Max(ua(w), ug(w)) (14)
Pang = Min(pa(w), ug(w)) (15)

In the proposed controller, Mamdani-type fuzzy
logic and the centroid defuzzification method were
employed. In the first stage, the fuzzy controller
performs the fuzzification process after receiving
the inputs. Then, based on the equation (13) and the
Mamdani implication method, the membership
functions are combined using a fuzzy operator. In
the next step, the values of the membership
functions are aggregated using the union operator
according to equation (14), and the outputs are then
defuzzified.

The inputs to the fuzzy system were selected as
the error and the derivative of the error from the
desired value at a given time. The membership
functions for these inputs were considered as
Gaussian functions. The position and velocity
errors were categorized into five membership
functions: [-2, -1, 0, +1, +2], with the variation
range for both position and velocity errors set to [-
1, 1]. This represents a general case, and to adjust
the range of position and velocity errors, a scaling
factor can be applied to the system error.

For the fuzzy system's output which represents
the required control force to guide the robot along
a specified path the membership functions were
also chosen as Gaussian functions based on the
Mamdani method. Finally, Figure 2 presents a
graphical representation of the membership
functions for both the system's inputs and output.

08 06 04 02 ) 02 0.4 06 08
u(N)

Figure 2 : Membership functions of the input and
output of the Mamdani fuzzy system

Finally, the fuzzy rule set for extracting the
appropriate control force was selected as follows:
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Table 1 : Selected Fuzzy Rule Set

Number Fuzzy rules

1 2 2 +4
2 2 -1 +3
3 2 0 +2
4 2 +1 +1
5 2 +2 0

6 -1 2 +3
7 -1 -1 +2
8 -If e -1 fmd e 0 }'hc;'n. +1

is is u" is

9 1 +1 0

10 1 +2 1
11 0 2 +2
12 0 -1 +1
13 0 0 0

14 0 +1 1
15 0 +2 2
16 +1 2 +1
17 +1 -1 0

18 +1 0 -1
19 +1 +1 -2
20 +1 +2 -3
21 +2 -2 0

22 +2 -1 -1

23 +2 0 -2
24 +2 +1 3
25 +2 +2 -4

3-2- Optimal LQR Controller

The objective of the LQR control method is to
determine the optimal control inputs u* that, when
applied to the system described by equation (11),
not only stabilize the system and satisfy the defined
constraints but also minimize the cost function
defined in equation (16). Additionally, the
system’s state variables are driven to converge to
zero with minimal control effort.

1
JXw,t) = XT(t)HX (L) + (16)
1 tfryT T
tho [X"QX + u"Ru] dt

In this context, H and Q are symmetric positive
definite weighting matrices, and R is a strictly

positive definite weighting matrix. These matrices
R and Q can be expressed as follows:

! 0
R = u%max
1
0 2
Uzmax

(17

A. S. Kish Khale et al.

! 0
Xlzmax
| O 0
Q - Xzzmax
1
0 2
X8max- 8x8

The general form of the control input calculated
from equation 18 is:

u* = —R1BTKX (18)

In this method, K represents the Lagrangian
multipliers (or feedback gain matrix) obtained by
solving the algebraic Riccati equation given in
equation (19). This equation is solved from the
initial simulation time to the final time using the
initial values of the system's state variables.

—KA—ATK —Q + KBR™'BTK (19)
=0
To solve this equation in MATLAB, the care

function is defined. The system equations in the
presence of the controller are as follows:

Zl = Cl)_() + Dll_i* (20)

Where u* is the optimal control input, which is
calculated according to the method described
above.

4- Simulation

All simulations were conducted using the values
provided in Table 2.

Table 2 : Vehicle Parameters

Parameter Symbol Unit Value
Vehicle Mass M, Kg 1300
Suspension Mass M. Kg 150
Suspension Spring Stiffness ki N/m 20000
Tire Equivalent Spring Stiffness k2 N/m 150000
Suspension Damping Coefficient bir N.s/m 1500
Tire Equivalent Damping Coefficient b N.s/m 7020

Distance from Center of Gravity to Rear

. I m 1.5
Suspension

Distance from Center of Gravity to Front
Suspension

Vehicle Moment of Inertia J Kg.m? 2000

Automotive Science and Engineering (ASE) 4859
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4-1- Dynamic Model Simulation

Using the dynamic model presented in equation
(5), the vehicle's dynamic behavior during bounce
and pitch motions is simulated. In this problem,
road disturbances (W) are modeled using a step
input, representing a vehicle encountering a speed
bump or similar road irregularity in real-world
conditions. The transfer function responses
corresponding to the bounce and pitch motions
concerning a unit step input were obtained to
simulate the system dynamics without applying
any control. For this purpose, the Step command in
MATLAB was used. The outputs of this simulation
are shown in the following figures.

Bounce Motion Due to Y1 Input Bounce Motion Due to Y2 Input

0.12 0.08
0.1
‘ 0.06
0.08 f ”“l
T— ‘
e U‘Nw“"“““’”m H |‘|‘|uluhul e
0.04 M
0.02
0.02
0 20 40 60 00 20

Time seconds) Time (seconds)

Figure 2 : The response of the transfer function
for pitch motion to step inputs for Y1 (front
wheel disturbance) and Y2 (rear wheel

disturbance)
Pitch Motion Due to Y1 Input Pitch Motion Due to Y2 Input
0 0.08
-0.01 0.07
|
-0.02 0.06 || l
-0.03 0.05 ’
s | \ { 3 I
2 004 I l ’ |I\J it 20,04 I || H H| ‘JH.U\ A AR nan
£ g ‘ J Jhve
< <
-0.05 0.03
-0.06 0.02
-0.07 0.01
-0.08 0
0 20 40 60 o]
Time {seconds) Time {seconds)

Figure 3 : The response of the transfer function
for roll motion to step inputs for Y1 (front wheel
disturbance) and Y2 (rear wheel disturbance)

As observed, the vibrations induced by this
excitation reach an acceptable level of damping
over approximately 50 seconds. During this period,
the system continuously vibrates, causing
passengers discomfort and adversely affecting the
vehicle's handling and steering responsiveness.

It is also evident that in the pitch motion, the
amplitude of the vibrations resulting from the front
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wheel disturbance is greater than that caused by an
equivalent disturbance at the rear wheel. This is
due to the shorter distance between the front wheel
and the vehicle's center of gravity. Naturally, if the
pitch motion is evaluated relative to the center of
gravity, the closer the disturbance occurs to the
center of gravity, the larger the resulting pitch
angle for a disturbance of equal magnitude.

This behavior confirms the accuracy of the
modeling approach using the half-car dynamic
model, as it appropriately captures the effects of the
vehicle geometry and suspension characteristics on
the dynamic response.

4.2 Control

This study aims to suppress vibrations caused by
disturbances such as road bumps while maintaining
the vehicle's stability. To achieve this, a controller
was designed using feedback from the system
outputs, aiming for an overshoot of less than 5%
for x; —x, and a settling time shorter than 5
seconds.

For example, when the simulated vehicle model
is subjected to a step input disturbance of 10
centimeters, the body oscillates within =5
millimeters and stabilizes within 5 seconds.

The fuzzy controller is simulated using the
membership functions and control rules presented
in the previous section.

Next, to implement the LQR controller, the gain
matrix was selected as follows:

-l ¢

= 1010
xdiag(l1 1 1 1 004 004 0.04 0.04])

e2y)

Where Q is a diagonal matrix with its central
diagonal values specified.

An initial condition error and an external
disturbance were applied to the system to evaluate
the system's performance better. The initial
conditions in this case are defined as follows:

Both wheels simultaneously encounter a speed
bump, with the front wheel displaced by 10
centimeters and the rear wheel displaced by 5
centimeters.

Additionally, the disturbance profile considered
for both the front and rear wheels is a step wave,
starting at 1.5 seconds and lasting for 0.1 seconds,
as illustrated below:
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Figure 4 : A representation of the disturbance
profile considered for the front and rear wheels

The results obtained from the simulation of the
system under the specified conditions and the
implementation of the controllers are as follows:

%107
T 15 V\ Fuzzy
@ \ - - LR
=100 \y
Sl N\
e L \ = /A‘%‘__
0 0.5 1 1.5 2 2.5
Time (s)
0.08 T . : ‘ .
€ 006 \\/\ Fuzzy
T N\ - - ‘LOR
c 0.04 - \
0 002
a he S
0 0.5 1 1.5 2 2.5

Time(s)

Figure 5 : Comparison of bounce and roll
movements in fuzzy PD controllers and LQR

As shown in Figure 5, the LQR controller
follows a smoother trajectory than the fuzzy
controller when encountering both the initial
condition error and the external disturbance and
converges to the desired stable point in a
completely uniform manner without any additional
oscillations. This indicates the superior optimality
of the LQR controller over the applied fuzzy
controller.

Moreover, the LQR controller reaches full
convergence while passing through smaller local
maxima, demonstrating higher robustness against
external disturbances. Although both controllers
were able to gradually suppress the effect of the
speed bump over time, the LQR controller

A. S. Kish Khale et al.

exhibited better performance in more rapidly
reducing the oscillations.

The control forces applied by the controllers are
as follows:

0 gFf\‘ﬂ-—', ‘ .
=3
¥ 5 : Fuzzy |-
= - —'LGR
-0}
0 0.5 1 1.5 2 2.5 3
Time(s)
ofe == ‘ N
=3
% 2 Fuzzy
=4 - - LQR
0 0.5 1 1.5 2 25 3
Time(s)

Figure 6 : Comparison of control forces for the
front axle (u1) and rear axle (uz) in fuzzy PD and
LQR controllers.

As shown in Figure 6, the absolute value of the
control force in the LQR controller starts from a
lower magnitude than that in the fuzzy controller,
indicating higher optimality. Both controllers
maintained a smooth and uniform force profile
throughout the trajectory, remaining within a
reasonable range.

When the external disturbance was applied, the
LQR controller demonstrated higher agility than
the fuzzy controller within the same time frame,
which contributed to better suppression of the
applied disturbance.

It is also noteworthy that the integral of the cost
function throughout the simulation was 4.46x107
for the uncontrolled system, 2.90x107 when using
the fuzzy controller, and 1.92x107 for the LQR
controller further confirming the superior
performance and efficiency of the LQR controller
over the fuzzy controller.

5- Conclusion

In this study, the dynamic half-car model was
selected for the suspension system and modeled
accordingly. Two control methods, Fuzzy Logic
and linear quadratic regulator (LQR), were
employed to control the active suspension system.
All modeling and simulations were performed in
the MATLAB environment, and the mathematical
model's validity was confirmed.

In the mathematical model simulation without
applying any control, it was observed that the
vibrations induced by a disturbance with an
amplitude of 0.1 reached an acceptable level of
damping after approximately 50 seconds. During

Automotive Science and Engineering (ASE) 4861
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this period, the system remained vibratory, causing
discomfort for the passengers and negatively
affecting the vehicle's handling performance.

Both designed controllers successfully achieved
their objectives in the mathematical simulations,
stabilizing the system within a desirable timeframe.
However, based on the observations, the
suspension system's bounce and pitch motions
exhibited up to 25% lower vibrations under the
LQR controller compared to the fuzzy controller,
thereby offering passengers a smoother and more
comfortable ride.

Furthermore, the absolute value of the control
force in the LQR controller started from a value up
to 25% lower than that of the fuzzy controller,
indicating higher optimality and efficiency for the
LQR method.

List of symbols
Symbol Description
U Control input force
M, Vehicle body mass
M, Suspension system mass
ks Suspension spring stiffness
k; Equivalent tire stiffness
Cs Suspension damper damping coefficient

Vehicle moment of inertia

Distance from the center of gravity to the
front suspension

Distance from the center of gravity to the
rear suspension

K, Proportional gain
K; Integral gain
Ky Derivative gain
R LQR weighting matrix
LQR weighting matrix
H Weighting matrix
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